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We have directly observed short-time stress propagation in viscoelastic fluids using two optically trapped
particles and a fast interferometric particle-tracking technique. We have done this both by recording correla-
tions in the thermal motion of the particles and by measuring the response of one particle to the actively
oscillated second particle. Both methods detect the vortexlike flow patterns associated with stress propagation
in fluids. This inertial vortex flow propagates diffusively for simple liquids, while for viscoelastic solutions the
pattern spreads superdiffusively, depending on the shear modulus of the medium.
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I. INTRODUCTION

Motion in simple liquids at small scales is usually char-
acterized by low Reynolds numbers, in which the response
of a liquid to a force applied at one point is Stokes-like—
decaying with distance r as 1 /r away from the origin of the
disturbance �1–3�. Here, fluid inertia can be neglected, and
the force is effectively felt instantaneously everywhere
within the medium. In practice, this is a good approximation,
for instance, in water at the colloidal scale up to micrometers
on time scales larger than a microsecond. At short times or
high frequencies, however, fluid inertia limits the range of
stress propagation. Any instantaneous disturbance must be
confined to a small region for short times. If the medium is
also incompressible, then this naturally gives rise to vorticity
and backflow. In simple liquids, stress then propagates
through the diffusive spreading of this vortex. Although this
basic physical picture has been known theoretically for
simple liquids since the work of Oseen in 1927 �4� and has
been shown in computer simulations since the 1960s �5�,
experimental observation of these effects has been largely
indirect, for instance, in the form of short-time corrections to
Brownian motion �6�. Direct experimental observation has
only recently been possible because of the high temporal and
spatial resolution required �7�.

The finite time it takes for vorticity to propagate leads to
persistence of fluid motion that manifests itself in algebraic
decay of the autocorrelation function of the velocity of either
a fluid element or a particle embedded in the fluid. This
decay is slower than the naive expectation of exponentially
decaying correlations for a massive particle experiencing vis-
cous drag. Thus, the effect is known as the long-time tail
effect �6,8,9�, which characterizes the transition from ballis-
tic to Brownian motion of particles in simple liquids. This
effect has been shown to be present even at the atomic level,
e.g., from neutron scattering experiments on liquid sodium
�10�.

We have shown that the interparticle correlations and re-
sponse functions of two particles can be used to directly
resolve the flow pattern and dynamics of vortex propagation
�7,11�. This was done by measuring the correlated thermal
motion of two optically trapped spherical particles using an
interferometric technique �12,13� with high temporal �up to
100 kHz� and spatial �subnanometer� resolution in both vis-
cous and viscoelastic fluids. We were able to observe, for
instance, the anticorrelation in the interparticle fluctuations
of thermal motion that is characteristic of the vortex propa-
gation. The method is related to passive two-particle mi-
crorheology �14–19� which can be used to measure shear
elastic moduli of viscoelastic materials. However, as the
present results show, inertial effects can severely limit the
practical high-frequency range of such two-particle mi-
crorheology techniques, which have so far neglected inertia.

The interparticle response functions ����, with real ����
and imaginary ���� parts defined by ����=�����+ i�����,
are obtained for motion parallel ���� and perpendicular ����
to the center line connecting the two particles. In the passive
approach, we directly measure the imaginary part of the re-
sponse function from the thermal position fluctuations of the
two particles via the fluctuation-dissipation theorem �FDT�.
The real part of the response function is then obtained from
a Kramers-Kronig integral �20�.

Here, in order to directly measure both real �in-phase� and
imaginary �out-of-phase� parts of the response function, we
have developed an active method �21,22�, in which one op-
tical trap drives oscillatory motion of one particle, while the
response of a second particle is measured at separation r. We
present and compare detailed experimental results of both
passive and active approaches. We also present a theoretical
derivation of the predicted response functions and corre-
sponding algebraic decay of the velocity autocorrelation
functions for viscoelastic fluids.

The outline of the paper is as follows. In Sec. II, we
present the theoretical analysis. In Sec. III, we present the
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materials and methods of sample preparation, as well as the
experimental techniques for the passive and active measure-
ments of the response functions. In Sec. IV we describe our
methods of data analysis used for the results presented in
Sec. V. In Sec. V, we first compare the data for simple liquids
with the dynamic Oseen tensor, which demonstrates the dif-
fusive propagation of the vortex flow. We then present our
results and comparison with theory for viscoelastic solutions,
including the evidence for superdiffusive stress propagation.
Finally, we conclude with a discussion �Sec. VI�, also men-
tioning implications of our results for microrheology in gen-
eral.

II. THEORY AND BACKGROUND

Newtonian liquids are described by the Navier-Stokes
equation, which is nonlinear. The nonlinearity, however, can
usually be neglected either for small distances or for low
velocities �1,2�. This is the so-called low-Reynolds-number
regime, since the relative importance of nonlinearities is
characterized by the Reynolds number Re= UL�

� , where U, L,
�, and � are, respectively, the characteristic velocity and
length scales, the density, and the viscosity. For steady flow,
this regime can also be thought of as the noninertial regime,
in which stress propagates instantaneously and, for instance,
the velocity response at a distance r from a point force varies
as 1 /r �1–3�. Such Stokes flow accurately describes the mo-
tion of micrometer-sized objects in water on time scales
longer than a few microseconds.

Even at low Reynolds number, however, there are remain-
ing consequences of fluid inertia for nonstationary flows �3�.
This unsteady Stokes approximation is described by the lin-
earized Navier-Stokes equation

�
�

�t
v� = ��2v� − �� P + f� , �1�

where v� is the velocity field, P is the pressure that enforces

the incompressibility of the liquid, and f� is the force density
applied to the fluid. By taking the curl of this equation we

observe that the vorticity �� =�� �v� satisfies the diffusion
equation with diffusion constant �=� /�.

As noted above, the short-time response of a liquid to a
point force generates a vortex. The propagation of stress
away from the point disturbance is diffusive: after a time t,
this vortex expands away from the point force to a size of
order 	���t /�. This can be seen by the fact that the curl of
Eq. �1� resembles the diffusion equation in the absence of
forces. In the wake of this moving vortex is the usual Stokes
flow that corresponds to a 1 /r dependence of the velocity
field. For an oscillatory disturbance at frequency �, the
propagation of vorticity defines a penetration depth 	
��� / ���� �1�. Stress effectively propagates instantaneously
on length scales shorter than this.

This picture generalizes to the case of homogenous vis-
coelastic media characterized by an isotropic, time-
dependent shear modulus G�t� �23�, although the propagation
of stress generally becomes superdiffusive �11�. We further
assume that the medium is incompressible, which is a par-

ticularly good approximation for polymer solutions such as
those considered here, at least at high frequencies �20,24,25�.
The deformation of the medium is characterized by a local
displacement field u��r� , t�, and the viscoelastic analog of the
Navier-Stokes equation �1� is

�
�2

�t2u��r�,t� = �� · �J�r�,t� − �� P + f��r�,t� , �2�

where

�J�r�,t� = 2�
−


t

dt�G�t − t���J�r�,t�� �3�

is the local stress tensor and

�J =
1

2
��� u� + ��� u��†� �4�

is the local deformation tensor. Incompressibility corre-

sponds to the constraint �� ·u� =0. In the limit of an elastic
medium with shear modulus G, for which the constitutive

relation in Eq. �3� becomes �J = ��� u� + ��� u��†�, we obtain the
wave equation from the curl of Eq. �2�, which results in
stress propagation with a constant velocity. This suggests
that the propagation of stress for viscoelastic media is super-
diffusive, as we derive below.

Equations �2� and �3� can be simplified by a decomposi-
tion of the force density and deformation into Fourier com-
ponents. Taking spatiotemporal Fourier transforms defined as

u��k�,�� =� d3r�
−





dt ei��t−k�·r��u��r�,t� , �5�

and defining the complex modulus

G���� 	 G���� + iG���� = �
0




dt ei�tG�t� , �6�

we can eliminate the pressure by imposing incompressibility
in Eqs. �2� and �3�. This leads to

u��k�,�� = 
 1 − k̂k̂

G����k2 − ��2� · f��k�,�� , �7�

where k̂=k� / �k�. We invert this Fourier transform to obtain the
displacement response function due to a point force applied
at the origin.

A. Response functions

For a point force f� at the origin, the linear response of the
medium at r� is given by a tensor �ij, where ui�r� ,��
=�ij�r� ,��f j�0� ,��. Here, �ij =�ij� + i�ij� is, in general, com-
plex. Given our assumptions of rotational and translational
symmetry, there are only two distinct components of the re-
sponse. These are �1� a parallel response that is given by a

displacement field u� parallel to both f� and r�, and �2� a per-

pendicular response given by u� parallel to f� and perpendicu-
lar to r�. The parallel response function ��, for instance, is
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obtained from the inverse Fourier transform of Eq. �7� �11�.
The response functions for general G���� are given by

���r,�� = ��� + i��� =
1

4�G����r
���r�
� �8�

and

���r,�� = ��� + i��� =
1

8�G����r
���r�
� , �9�

where 
=��2 /G���� is complex,

���x� =
2

x2 ��1 − ix�eix − 1� , �10�

and

���x� =
2

x2 �1 + �x2 − 1 + ix�eix� . �11�

The magnitude of 
 defines the inverse �viscoelastic� pen-
etration depth

	ve =��G��
��2 . �12�

1. Simple liquids

For a simple liquid, G����=−i�� and 
= i�� /�. The ve-
locity response of the liquid is then characterized by

− i����r,�� = ���� − i���� =
1

4��r
�̃�
r���

2�
� �13�

and

− i����r,�� = ���� − i���� =
1

8��r
�̃�
r���

2�
� ,

�14�

where

�̃���x� =
��1 + x�sin x − x cos x�e−x

x2 , �15�

�̃���x� =
1 − ��1 + x�cos x + x sin x�e−x

x2 , �16�

�̃�� �x� =
��x + 2x2�cos x − �1 + x�sin x�e−x

x2 , �17�

�̃�� �x� =
��x + 2x2�sin x + �1 + x�cos x�e−x − 1

x2 . �18�

Thus, for instance, the in-phase and out-of-phase velocity
responses in the parallel direction are given by ���
= 1

4��r �̃�� and −���= 1
4��r �̃��.

We have written the response functions in Eqs. �8� and �9�
in a form in which the noninertial limits �x→0� are simple:
��,�→1. Thus, for a simple liquid in the limit x→0, Eqs.
�13� and �14� reduce to the �time-independent� Oseen tensor
�2,4�. For finite x, these response functions give the dynamic
Oseen tensor �4,26�, which are shown as the solid lines in
Fig. 1, where for small r /	 the parallel and perpendicular
velocity response �i.e., −i���,�� approach 1

4��r and 1
8��r for a

unit force at the origin. These then decay for r�	. The re-
gion of negative response in the perpendicular case corre-
sponds to the backflow of the vortex.

The response functions above represent the ensemble-
average displacements due to forces acting in the medium.
These response functions also govern the equilibrium ther-
mal fluctuations and the correlated fluctuations from point to
point within the medium. The relationship between thermal
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FIG. 1. Comparison of theoretical and experimentally measured
response functions for a simple liquid. The predictions of the nor-
malized velocity field from the dynamic Oseen tensor in Eqs. �13�
and �14� are shown as black and gray lines. Normalized complex
interparticle response functions between two probe particles �silica
beads, R=0.58 �m� measured with the active microrheology
method in water: �a� 4�r���� in the parallel direction and �b�
8�r���� in the perpendicular direction, plotted versus the ratio of
the separation distance r �fixed for a given bead pair, r=11.3 �m
for parallel, and r=10.3 �m for perpendicular� to the frequency-
dependent viscous penetration depth 	v. Both real �filled symbols�
and imaginary parts �open symbols� are shown, for both parallel
and perpendicular directions. These results are compared with the
theory for �=0.97 mPa s and �=1000 kg m−3. There is good
agreement with no free parameters.
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fluctuations and response is described by the fluctuation-
dissipation theorem. Specifically, for points separated by a
distance r along the x̂ direction,

C�,��r,�� =
2kBT

�
��,�� �r,�� , �19�

where

C��r,�� = �
−





dt ei�t
ux�0,0�ux�r,t�� �20�

and

C��r,�� = �
−





dt ei�t
uy�0,0�uy�r,t�� . �21�

2. Polymer solutions

An experimentally pertinent illustration is given by the
high-frequency complex shear modulus of a polymer solu-
tion,

G���� = − i�� + ḡ�− i��z = �G�e−i� �22�

which has both solvent and polymer contributions. For the
Rouse model of flexible polymers z=1 /2 �27�, while for
semiflexible polymers z=3 /4 �20,28,29�. The latter case is
shown as the solid lines in Fig. 2. We see that the oscillatory
or anticorrelated response becomes more pronounced in vis-
coelastic materials.

The magnitude of the complex modulus is given by

�G� = ��ḡ�z�2 + ����2 + 2�z+1�ḡ sin��z/2� , �23�

while its phase is given by

sin � =
��� + ḡ�z sin��z/2��

�G�
�24�

and

cos � =
ḡ�z cos��z/2�

�G�
. �25�

It is also useful to have the following expressions for the half
phase-angles:

sin
�

2
=�1

2

1 −

ḡ�z cos��z/2�
�G� � , �26�

cos
�

2
=�1

2

1 +

ḡ�z cos��z/2�
�G� � . �27�

We define the real parameter �=r���2 / �G� and use the defi-
nitions Eqs. �10� and �11� to obtain the following compact
expressions for the response functions ��� ,��� which can be
expanded using the compound angle formulae and the defi-
nitions above. The real and imaginary parts of the parallel
response are given by

4��G�r����r,�� =
2

�2�e−� sin �/2�cos
� cos
�

2
�

+ � sin
�

2
+ � cos

�

2
�� − 1� �28�

and

4��G�r����r,�� =
2

�2e−� sin �/2�sin
� cos
�

2
�

− � cos
�

2
+ � cos

�

2
�� , �29�

while the corresponding expressions for the perpendicular
response are given by
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FIG. 2. Comparison to Eqs. �8�–�11� of both real and imaginary
parts of the normalized interparticle response functions between
two probe particles �silica beads, R=0.58 �m�, measured with the
active microrheology method for two separation distances r in 1
mg/ml entangled F-actin solutions. �a� 4�r�G������ and �b�
8�r�G������, plotted versus the ratio of the separation distance r
�r=11.3 �m in parallel and r=10.3 �m in perpendicular direction�
to the frequency-dependent viscoelastic penetration depth 	ve. Here,
the parameters ḡ and z in Eq. �22� were varied to obtain simulta-
neous fits of all data sets to Eqs. �28�–�31�, using a single set of
parameters z and ḡ, while accounting for the solvent �water� viscos-
ity. Both the real �filled symbols� and imaginary �open symbols�
parts of both parallel and perpendicular response functions are in
good agreement with Eqs. �28�–�31� with optimal parameters ḡ
=0.22�0.05 Pa sz and z=0.78�0.02. The corresponding theoreti-
cal lines are shown for z=0.75 and ḡ=0.22.
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8��G�r��� �r,�� =
2

�2�1 − e−� sin �/2�cos
� cos
�

2
�

+ � sin
�

2
+ � cos

�

2
�

− �2 cos
� + � cos
�

2
��� �30�

and

8��G�r��� �r,�� =
2

�2e−� sin �/2�− sin
� cos
�

2
�

+ � cos
�

2
+ � cos

�

2
�

+ �2 sin
� + � cos
�

2
�� . �31�

The imaginary part of the response functions will be used to
calculate the correlation functions, Eq. �19�, used for analysis
of the passive experiments, while the real part of the re-
sponse functions will be used for comparison with the active
experiments.

We can simplify the expressions above in the limit that
the polymer contribution to the viscoelasticity dominates the
shear modulus. We then obtain the simple scaling form
G����� ḡ�−i��z �30� giving �G�= ḡ���z , �=�z /2. Further
simplification of Eq. �19� using the expressions in Eqs. �31�
and �29� and definitions in Eqs. �10� and �11� leads, e.g., to

C��r,�� =
kBT

2���G�r� 2

�2e−sin�z�/4����1 + sin
 z�

4
���

�sin�cos
 z�

4
��� − cos
 z�

4
�

�� cos�cos
 z�

4
����� , �32�

where �=r���2 / �G� characterizes the overall decay of stress
due to inertia. This decay corresponds to superdiffusive
propagation of stress for viscoelastic media with G��z and
z�1, since the response is limited to a spatial range that
grows with time as t�2−z�/2. As noted above, for viscous media
with z=1, the vorticity satisfies the diffusion equation, and
the stress propagates diffusively, as t1/2. In the elastic limit
with z=0, by contrast, the corresponding equation becomes
the wave equation, with ballistic propagation of stress. Vis-
coelastic media lead to intermediate, strictly superdiffusive
behavior.

The resulting displacement field, exhibiting the vortex
pattern, is shown in Fig. 3 for a point force at the origin
pointed along the x axis. This flow pattern exhibits specific
inversion symmetries: vx �vy� is symmetric �antisymmetric�
for either x→−x or y→−y, as can be seen by the fact that
the �linear� response must everywhere reverse if the direction
of the force is reversed.

B. Velocity autocorrelations and the long-time tail

The self-sustaining backflow represented in Fig. 3 gives
rise to long-lived correlations that, for instance, affect the
crossover from ballistic to diffusive motion of a particle in a
liquid. For a simple liquid, the fluid velocity �auto�correla-
tions 
v��0, t� ·v��0,0�� decay proportionally to ��t�−3/2. This is
known as the long-time tail �5,6,8�. For a viscoelastic fluid,
stress propagation is faster than diffusive, resulting in a more
rapid decay of velocity correlations. The decay is, however,
still algebraic.

1. Simple liquids

For a simple liquid, Eq. �1� means that

�− i�� + �k2�vi = �	ij − k̂ik̂ j�f j �33�

for the Fourier transforms. This gives the response in velocity
vi to a force component f j that is �thermodynamically� con-
jugate to a displacement uj. We denote this response function
by �viuj

, where

�viuj
�k�,�� =

�	ij − k̂ik̂ j�
�k2 − i��

. �34�

The fluctuation-dissipation theorem then tells us that

�viuj
�r�,t� = −

1

kT

d

dt

vi�r�,t�uj�0,0�� , �35�

where this is valid only for t�0 because of causality in the
response. The correlation function is, however, defined for
both positive and negative times.

Due to translation invariance in time, the correlation func-
tion 
vi�r� , t+ t��uj�0, t��� must be independent of t�. Thus,
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FIG. 3. Displacement field displays a clear vortexlike structure.
Here, a force in the x̂ direction is applied at the origin �as shown by
the filled circle and arrow�. Distances are shown in units of the
penetration depth 	=��G� / ���2�. This example has been calculated
for the Rouse model with z=1 /2.
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0 =
d

dt�

vi�r�,t + t��uj�0,t���

= 
v̇i�r�,t + t��uj�0,t��� + 
vi�r�,t + t��v j�0,t��� , �36�

which also means that


kT�viuj
�r�,t�� = 
vi�r�,t�v j�0,0�� .

Again, this is valid only for t�0 because of causality in the
response. Ultimately, however, we are interested in the auto-
correlation function 
v� ·v��= 
vivi� for r→0 above. In this
case, the correlation function is manifestly symmetric in t.
Thus,


vi�r� → 0,t�vi�0,0�� = kT�viui
�r� → 0, �t�� . �37�

We first calculate �viuj
�k� , t�, since the limit �viuj

�r�→0, t� can
be obtained from this simply by integrating over all k�,

�viuj
�k�,t� = �	ij − k̂ik̂ j�� d�

2�
e−i�t 1

�k2 − i��

=
�	ij − k̂ik̂ j�

− 2�i�
� e−i�t d�

� + i�k2 ,

where �=� /�. But, the last integral can depend only on the
combination t�k2, since we can replace � by ��k2, where � is
dimensionless. Specifically,

�viuj
�k�,t� =

�	ij − k̂ik̂ j�
− 2�i�

� e−i��k2t d�

� + i
=

�	ij − k̂ik̂ j�
�

e−�k2t

�38�

for t�0. Otherwise, the result is zero. This integral can be
done by integration along a closed contour containing the
real line in either the upper half plane for t�0, or the lower
half plane for t�0.

Finally, to get the limit

�viui
�r� → 0,t� �39�

we simply integrate:

�viui
�r� → 0,t� =� d3k

�2��3

�	ii − k̂ik̂i�
�

e−�k2t =
2

�
�4��t�−3/2.

�40�

Again, this is only for t�0. Thus,


v��r� → 0,t� · v��0,0�� =
2kT

�
�4���t��−3/2. �41�

2. Viscoelastic media

For viscoelastic media, the calculation is similar, except
that

�viuj
�k�,�� = − i��uiuj

�k�,�� = �vu�k�,���	ij − k̂ik̂ j� , �42�

where �uiuj
=�ij, and where we have defined

�vu�k�,�� =
1

�

 i�

�2 − G�k2/�� �43�

for simplicity. As above, all the singularities in this must lie
in the lower half plane in order for the response function to
be causal.

Evaluation of the inverse Fourier transform of Eq. �43� to
obtain �vu�k� , t� can be done by use of the Mittag-Leffler
functions. The Mittag-Leffler functions �31,32� E��z�, which
are entire functions parametrized by a continuous parameter
�, can be defined by the power series

E��z� = �
k=0



zk

��1 + �k�
, � � 0. �44�

Note that E1�x�=exp�x�. Straightforward manipulation �31�
of the definition Eq. �44� shows that their causal Fourier
transforms are given by

�
−





dt ei�t��t�E��− at�� =
i�

�2 − a�− i��2−� , �45�

where ��t� is the Heaviside step function. Performing the
inverse Fourier transform, we obtain

�vu�k�,t� = E2−z�− �ḡk2/��t2−z�, t � 0, �46�

for G�= ḡ�−i��z. The asymptotic expansions for the Mittag-
Leffler functions �31,33� are

E��− z� = �1 −
z

��1 + ��
+ O�z2� , z � 1,

z−1

��1 − ��
+ O�z−2� , z � 1. � �47�

Thus, the velocity correlation function is given by


v��r� → 0,t� · v��0,0�� =
2kT

�

4�

�2��3�
0

1/a

k2dkE2−z

��− �ḡk2/���t�2−z� . �48�

From the asymptotic properties of E��t�, it is clear that the
integral does not converge at k→
, necessitating a finite
cutoff �which we choose as the size of the probe particle�.
We can express the correlation function as


v��0,t� · v��0,0�� = �t�−3/2�2−z�2kT

�

�

ḡ
�3/2 2 − z

�2��2 I2−z,

I� = �
0

��

dx x3�/2−1E��− x�� , �49�

and ��= ��t�ḡ /�a2�1/�.
We can get an approximation to the value of I� by split-

ting the integral into two sections,

I� = �
0

1

dx E�
��− x�� + �

1

��

dx E�
��− x�� ,

using the two asymptotic forms for E��t�. We then obtain
finally the expression
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v��r� → 0,t� · v��0,0�� � C1�t�−3�2−z�/2 + C2�t�−�5−3z�/2,

�50�

where

C1 =
4kT

�2��2�

�

ḡ
�3/2

�
5��3 − z���z − 1� − 3��z − 1� − 15��3 − z�

15��3 − z���z − 1�
�51�

and

C2 =
4kT

�2��2a�

�

ḡ
� 1

��z − 1�
. �52�

Here, the dominant first term in Eq. �50� corresponds to a
faster asymptotic decay of correlations for z�1 than for
simple liquids. This is a direct consequence of the superdif-
fusive propagation of stress in this case. Also, it is interesting
to note that the second term in Eq. �50� strictly vanishes in
the z→1 limit of simple liquids.

III. MATERIALS AND METHODS

Simple liquids: For our experiments we used two New-
tonian fluids with different viscosities � and mass densities
�, namely, water ��=0.969 mPa s and �=1000 kg m−3� and
a �1:1 v/v� water-glycerol mixture ��=6.9 mPa s and �
=1150 kg m−3�.

Viscoelastic fluids: We performed experiments with two
different viscoelastic fluids, wormlike micelle solutions, and
solutions of the cytoskeletal biopolymer F-actin. Wormlike
micelles were prepared by self-assembly of cetylpyridinium
chloride �CPyCl� in brine �0.5M NaCl� with sodium salicy-
late �NaSal� as counterions, with a molar ratio of Sal to
CPy of 0.5. Three different concentrations of wormlike mi-
celles were used: cm=0.5%, 1%, and 2%. Wormlike micelles
behave essentially like linear flexible polymers with an av-
erage diameter of about 3 nm, a persistence length of about
10 nm, and contour lengths of several micrometers �34�.
F-actin was polymerized from monomeric actin �G-actin�
isolated from rabbit skeletal muscle according to a standard
recipe �35�. G-actin was mixed with silica beads in poly-
merization buffer �2 mM HEPES �4-�2-hydroxyethyl�-1-
piperazineethanesulfonic acid�, 2 mM MgCl2, 50 mM KCl,
1 mM Na2ATP �adenosine-5�-triphosphate�, and 1 mM
EGTA �ethylene glycol tetraacetic acid�, pH 7� and incu-
bated for 1 h. Entangled actin solutions were used as a model
system for semiflexible polymer solutions. Experiments were
done at concentrations of c=0.5 and 1 mg/ml.

A. Experimental methods

Details of the experimental setup can be found in
�13,21,36,37�. Briefly, we have used a custom-built inverted
microscope that includes a pair of optical traps formed by
two focused laser beams of different wavelengths ��
=1064 nm, Nd:YVO4, Compass, Coherent, Santa Clara,
CA� and �=830 nm �diode laser, cw, IQ1C140, Laser 2000�.
The optical traps fulfill two functions. �i� They confine the

particles around two well-defined positions and at the same
time detect particle displacements with high temporal and
spatial resolution in the passive method. �ii� In the active
method one trap is used to apply a sinusoidally varying force
to one particle, while the response of the other particle is
detected in the second trap. In the passive method, a pair of
silica beads �Van’t Hoff Laboratory, Utrecht University,
Utrecht, Netherlands� of various radii �R=0.25 �m�5%,
0.580 �m�5%, 1.28 �m�5%, and 2.5 �m�5%� were
weakly trapped �trap stiffness between 2 and 5 �N /m,
where larger particles required the higher laser intensities to
avoid shot noise. Transmitted laser light was imaged onto
two quadrant photodiodes �QPD�, such that particle displace-
ments in the x and y directions were detected interferometri-
cally �12�. A specialized silicon p-i-n photodiode �YAG444-
4A, Perkin-Elmer, Vaudreuil, Canada�, operated at a reverse
bias of 110 V, was used in order to extend the frequency
range up to 100 kHz for the 1064 nm laser �38�. The 830 nm
laser was detected by a standard silicon p-i-n photodiode
operated at a reverse bias of 15 V �Spot9-DMI, UDT, Haw-
thorne, CA�. Amplified outputs were digitized at 195 kHz
�analog-to-digital interface specs� and further processed in
LABVIEW �National Instruments, Austin, TX�. Output volt-
ages were converted to actual displacements using Lorentz-
ian fits to power spectral densities �PSDs� as described in
�39�. In the case of water, calibration was done on the beads
that were used in the experiments, while for the viscoelastic
solutions and the more viscous liquid, calibrations were done
in water with beads from the same batch.

In the active method, the 1064 nm laser was used to os-
cillate one particle, while the 830 nm laser was used for
detection of the second particle at a separation distance r.
The driving laser was deflected through an acousto-optical
deflector �AOD� �TeO2, model DTD 276HB6, IntraAction,
Bellwood, IL�, using a voltage-controlled oscillator �DRF.40,
AA Opto-electronic, Orsay, France�. The force applied to the
driven particle was calibrated by measuring the PSD of the
Brownian motion of a particle of the same size trapped in
water with the same laser power �39�. The output signal from
the QPD detecting the second laser was fed into a lock-in
amplifier �SR830, Stanford Research Systems, Sunnyvale,
CA� to obtain the amplitude and phase of the particle re-
sponse. All experiments were done in sample chambers made
from a glass slide and a cover slip with about 140 �m inner
height, with the particles at least 25 �m distance from both
surfaces. The laboratory temperature was stabilized at T
=21.5 °C.

IV. DATA ANALYSIS

In both the active and passive methods, we calculate the
linear complex response function � defined by u���
=����F���, where F��� is the applied force. Linear re-
sponse applies by definition in the passive method, and in the
active method the particle displacements u��� were kept suf-
ficiently small. Again, we consider separately the real, �����,
and imaginary parts, �����, of the response. In all our ex-
periments, as sketched in Fig. 4, the coordinate system was
chosen in such a way that x is parallel to the line connecting
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the centers of the two particles ��� and y perpendicular ��� to
that. The interparticle response functions along these two
directions were used to determine the flow field.

The displacement ux
�1���� of particle 1 in the x direction is

related to the force Fx
�2� acting on particle 2 according to

ux
�1����=�����Fx

�2����. Similarly, the perpendicular response
function was derived from uy

�1����=�����Fy
�2����. The

single-particle response functions for each of the x and y
directions are defined as ux,y

�1����=�auto���Fx
�1����. For homo-

geneous, isotropic media, the two functions ��,���� com-
pletely characterize the linear response at any point in the
medium due to a force at another point. The displacement
response functions ��,���� determine both position and ve-
locity response −i���,����.

In the passive approach, the medium fluctuates in equilib-
rium, and the only forces on the particles are thermal or
Brownian forces. Therefore the fluctuation-dissipation theo-
rem of statistical mechanics �40� relates the response of the
medium to the displacement correlation functions. For two
particles, these correlation functions are the cross-correlated
displacement fluctuations 
ux

�1��t�ux
�2��0�� and 
uy

�1��t�uy
�2��0��.

We used fast Fourier transforms �FFT� to calculate displace-
ment cross-correlation functions in frequency space and ob-
tained the imaginary parts of the complex interparticle re-
sponse functions ��,�� ��� via the FDT:

������ =

�� 
ux
�1��t�ux

�2��0��ei�tdt

2kT
�53�

and

��� ��� =

�� 
uy
�1��t�uy

�2��0��ei�tdt

2kT
, �54�

where k is the Boltzmann constant and T is the controlled
laboratory temperature. The real parts of the interparticle re-
sponse functions ��,�� ��� were obtained by a Kramers-
Kronig integral:

��,�� ��� =
2

�
P�

0


 ���,�� ���
�2 − �2

=
2

�
�

0




cos�t���
0




��,�� ���sin�t��d� , �55�

where P denotes a principal-value integral �20�. The high-
frequency cutoff of the Kramers-Kroning integral limits the
frequency range of the calculated ��,�� ��� �13�. We also used
the active method to obtain both real and imaginary parts of
the response functions with 100 kHz bandwidth, as in Refs.
�21,37�. Here the lock-in amplifier provides directly the in-
phase �real part� and out-of-phase �imaginary part� responses
of the second particle. The measurements were done over a
grid of driving frequencies.

V. RESULTS

A. Simple liquids

In the low-frequency limit, where fluid inertia can be ne-
glected, the interparticle response functions are inversely re-
lated to the shear modulus of the medium �20,24,41�. For a
simple viscous fluid, the response functions in this limit are
given by

�� = 2�� =
i

4�r��
, �56�

where r is the separation distance between the two particles
and � is the viscosity. These relations also shows �via the
FDT� a 1 /r dependence of the Fourier transform of the dis-
placement cross-correlation functions:

S� =� 
ux
�1��t�ux

�2��0��ei�tdt �57�

and

S� =� 
uy
�1��t�uy

�2��0��ei�tdt . �58�

In Fig. 5, displacement cross-correlation functions for par-
ticle pairs in water, normalized to compensate for the dis-
tance dependence �4�rS� and 8�rS��, are plotted versus fre-
quency. For comparison a single-particle displacement
autocorrelation function, normalized for the bead size depen-
dence �6�RSauto�, is plotted as a solid line, for a particle
radius of R=0.58 �m. The autocorrelation function agrees
well with the power-law slope of �2 up to nearly 100 kHz.
This slope is expected from the high-frequency limit of the
Lorentzian shape of the power spectral density �equal to the
Fourier transform of the displacement autocorrelation func-
tion� of the displacements of a harmonically confined
Brownian particle in a viscous fluid �39�. The effect of fluid
inertia is evident as a deviation from this power law in

x

y
z

FIG. 4. �Color online� Schematic sketch of the experiment. A
pair of silica beads �radius R� is trapped by a pair of laser traps at a
separation distance r. In the passive method, the position fluctua-
tions of each particle in the x and y directions are simultaneously
detected with quadrant photodiodes and the displacement cross cor-
relations are measured parallel and perpendicular to the line con-
necting the centers of the two beads. In the active method, one of
the beads is oscillated by rapidly moving one laser trap either in the
x or in the y direction and the resulting motion of the other particle
is measured in the x and the y direction. Laser intensity was ad-
justed to result in a trap stiffness typically between �2 and
5 �N /m� for passive measurements.
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the displacement cross-correlation functions. A systematic
r-dependent decrease of the cross correlations is apparent at
high frequencies for separations r ranging from 2.2 to
11.7 �m. The faster decrease of cross correlations is a mani-
festation of the finite velocity at which stress propagates into
the medium. For larger r, the data show that the decrease
begins at a lower frequency, because it takes longer for stress
to propagate further. A comparison of Figs. 5�a� and 5�b�
shows that the decrease of the cross correlation is, at the
same separation distance, more pronounced in the perpen-
dicular channel than in the parallel channel. This is due to the
fact that in the vortexlike flow pattern of Fig. 3 there is a
region of fluid motion in the opposite direction to the applied
force. For r�5 �m �open squares�, the cross correlations
become negative in the observed frequency window �not
shown in the log-log plot�. At still higher frequencies, the
displacement cross-correlation functions again become posi-
tive �Fig. 5�b��, which is visible for the larger separations r
=8.3 and 11.7 �m, consistent with the expected oscillation
in the displacement cross-correlation functions in the fre-
quency domain. This effect becomes more pronounced in
viscoelastic media.

In both parallel ��� and especially perpendicular ��� cor-
relation functions, the effects of inertia are readily apparent
on the millisecond time scale for particle separations of ap-

proximately 10 �m. This limits the high-frequency or short-
time range of validity of the analysis used previously in two-
particle microrheology �14–19,24�. The downturn in the data
of Figs. 5�a� and 5�b� correspond to deviations from the 1 /r
dependence expected for instantaneous stress propagation.
This limitation becomes increasingly severe at large separa-
tions r, due to the diffusive character of the stress propaga-
tion, which means, for instance, a loss of two decades in
temporal resolution with each decade increase in particle
separation. Similar limitations apply for viscoelastic media,
as we show below.

The spatial and temporal propagation of the inertial vortex
in a general viscoelastic medium is characterized by Eqs.
�8�–�11� �4,7,11�. For simple liquids, A=� �viscosity� and z
=1. In Figs. 6�a� and 6�b�, we compare the imaginary parts
of the normalized interparticle response functions
4��r������� �Fig. 6�a�� and 8��r���� ��� �Fig. 6�b�� for
water and a �1:1 v/v� water-glycerol mixture. In order to
collapse all data onto a single master curve, as suggested by
Eqs. �8�–�11�, we have plotted these normalized response
functions versus the probe particle separation r scaled by the
corresponding frequency-dependent penetration depth 	v
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FIG. 5. Normalized displacement cross-correlation functions �a�
4�rS� and �b� 8�rS� of two probe particles �silica beads, R
=0.58 �m� in water versus frequency �f =� /2��, compared for
different separation distances r �symbols�. In both �a� and �b�, the
solid line is the autocorrelation function of a single particle, nor-
malized by 6�R. The single-particle motion agrees well with the
expected frequency dependence of a single Brownian particle �slope
of �2�, as indicated by the dashed lines.

0 1 2 3 4 5 6 7 8 9
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

||4π
rη

ω
α"

||

r / δv

r (µm) water water/glycerol
11.7
8
5.7
4.7
2.2

0 1 2 3 4 5 6 7 8 9
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊥

r (µm) water water/glycerol
11.7
8
5.7
4.7
2.2

8π
rη

ω
α"

⊥
r / δv(b)

(a)

FIG. 6. Normalized imaginary parts of interparticle response
functions between two probe particles �silica beads, R=0.58 �m�
measured with the passive method, �a� 4�r����� in the parallel
direction and �b� 8�r����� in the perpendicular direction, plotted
versus the ratio of the separation distance r �fixed for a given bead
pair� to the frequency-dependent viscous penetration depth 	v, in
water �open symbols, �=0.969 mPa s� and in water-glycerol �filled
symbols, �=6.9 mPa s�. Solid lines are Oseen’s predictions for a
simple liquid with no adjustable parameters. Data are plotted only
for ��200 rad /s and for ��2 krad /s; one in every five data
points is shown.
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=�� /��. As shown in Fig. 6, data taken at all of the differ-
ent separations r ranging from 2.2 to 11.7 �m fall onto a
single curve for both the parallel �Fig. 6�a�� and the perpen-
dicular �Fig. 6�b�� interparticle response functions. Data for
water also collapse on the water-glycerol data, after account-
ing for the different viscosities, which are known in both
cases. Thus, no free fit parameters were used. The single
curves of collapsed data are in quantitative agreement with
the frequency-dependent dynamic Oseen tensor in Eqs. �13�
and �14� shown by the solid lines in Figs. 6�a� and 6�b�,
where the region of negative response in the perpendicular
direction corresponds again to the backflow region of the
vortex already described above.

At separations r large compared to particle size, the inter-
particle response functions become independent of probe
particle size and shape �24�, leaving a dependence only on r
and �. In our analysis, we have assumed that the particles are
pointlike since the ratio r /R�4 in all experiments. In order
to directly check the validity of the approximation, we mea-
sured the interparticle response functions with particles of
different sizes. In Figs. 7�a� and 7�b� the imaginary parts of
the normalized response functions in water 4��r������� and

8��r���� ��� are plotted versus r /	v, obtained with probe
particles of radius R=0.58, 1.05, 1.28, and 2.5 �m. We find
no systematic bead-size dependence, justifying the point-
probe approximation. Again all normalized and scaled data
collapse onto one single curve for each channel, which in
turn agrees well with the dynamic Oseen tensor. The devia-
tions observed in the last data points for R=1.05 and 2.5 �m
are most probably due to the influence of shot noise at high
frequencies. Shot noise becomes a problem for larger beads
because of their smaller fluctuation amplitudes, which will
eventually produce signals that approach the fixed shot noise
level. The deviations observed for these particle sizes are not
consistent with a possible error due to finite particle size,
which should be larger for smaller r /R.

So far, we have considered the passive fluctuations that
directly measure only the imaginary �out-of-phase� part of
the interparticle response functions ���,�� ����. With the active
method described in Sec. III A we can determine both real
and imaginary part of the response functions. In Figs. 1�a�
and 1�b�, we show the normalized inter-particle response
functions ��,�� ��� and ��,�� ��� measured by active microrhe-
ology �bead radius R=0.58 �m� in water for both parallel
and perpendicular directions. In both cases we find good
agreement with Eqs. �13� and �14�. The slightly different
separation distances in parallel �r=10.3 �m� and perpen-
dicular �r=11.3 �m� directions were due to different set-
tings of the AOD signal in these measurements.

B. Viscoelastic solutions

In viscoelastic polymer solutions, the elastic component
in the response of the medium modifies the propagation of
the inertial vortex. We first discuss our results for wormlike
micelle solutions, the viscoelastic properties of which have
been characterized by microrheology �42,43�. In Fig. 8 we
have plotted the displacement cross-correlation functions
�4�rS� and 8�rS�� in a 1% wormlike micelle solution versus
frequency for two particles at various separation distances r
between 2 and 8 �m. For comparison, we have added the
scaled autocorrelation function 6�RSauto for a single particle
�R=0.58 �m�. In contrast to the situation in simple liquids,
the particles were here confined by the surrounding polymer
network and do not diffuse freely. Thus, the frequency de-
pendence is weaker than for Brownian motion �i.e., the slope
is less steep than �2 in the low-frequency, noninertial re-
gime� �42,43�. As before, the displacement cross-correlation
functions of the two probe particles are used to map the
vortexlike flow pattern and its propagation in time. The
r-dependent decrease of the cross-correlation functions oc-
curs for both parallel �Fig. 8�a�� and perpendicular �Fig. 8�b��
directions, although the latter is more apparent.

In order to collapse these data onto a single curve for each
of the two channels �parallel and perpendicular�, following
Eqs. �8�–�11�, we plot the normalized interparticle response
functions 4��G�r��� and 8��G�r��� versus scaled r /	ve,
where 	ve is the viscoelastic penetration depth. Unlike for the
water and water-glycerol samples, we do not a priori know
the frequency-dependent shear modulus G����. Based on
theoretical expectations for flexible polymers �27�, as well as

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

||

4π
rη

ω
α"

||

r / δv

r/R R (µm)
3.8, 0.58
4.8, 2.5
8.4, 1.05
9.7, 1.28
9.8, 0.58
20.1, 0.58

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊥

8π
rη

ω
α"

⊥

r / δv

r/R R (µm)
3.8, 0.58
4.8, 2.5
8.4, 1.05
9.7, 1.28
9.8, 0.58
20.1, 0.58

(b)

(a)

FIG. 7. �Color online� Normalized imaginary parts of interpar-
ticle displacement response functions between two probe particles
of various radii measured with the passive method in water �silica
beads, R given in legend�, �a� 4�r����� in the parallel direction and
�b� 8�r����� in the perpendicular direction, plotted versus the ratio
of the separation distance r �fixed for a given bead pair� to the
frequency-dependent viscous penetration depth 	v. These response
functions also represent the in-phase velocity response normalized
by the corresponding components of the Oseen tensor. Different
particle sizes �R=0.58, 1.05, 1.28, and 2.5 �m� were used at vari-
ous separation distances r.
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on prior high-frequency rheology of wormlike micelle solu-
tions �42,43�, we assume that the shear modulus has the
functional form given in Eq. �22�. Thus, in order to achieve
the collapse of all data onto the master curves represented by
Eqs. �8�–�11�, we vary the two correlated parameters ḡ and z.
We expect z to be independent of the micelle concentration,
while ḡ should depend linearly on the polymer or micelle
concentration. In Fig. 9�a�, we show the resulting collapse of
the normalized interparticle response functions in parallel
and perpendicular directions for different separations r. The
predictions of Eqs. �8�–�11� are shown with black and gray
lines �11�. The best overall collapse of the data for wormlike
micelle solutions at all concentrations �0.5, 1, and 2 wt %�
and separations r from 2 to 16 �m was found for z
=0.68�0.05 and ḡ concentration dependence as seen in Fig.
9�b�.

In order to further test the inertial effects in viscoelastic
media, we also performed experiments on another viscoelas-
tic fluid with a somewhat different frequency-dependent
shear modulus, namely, entangled F-actin solutions. At high
frequency, semiflexible F-actin filaments contribute to the
viscoelasticity of the medium in a different way from flexible
polymers �19,20,28,29�. Therefore, the spatial structure and
the propagation dynamics of the vortex should be different.
Figure 10 shows the collapse of the interparticle response

functions 4��G�r��� and 8��G�r��� plotted versus scaled dis-
tance r /	ve onto two master curves for the parallel and the
perpendicular direction. The actin concentration was 1
mg/ml and the probe radius 0.58 �m and we used separation
distances r ranging from 4.2 to 16.2 �m. In an F-actin so-
lution of this concentration, the magnitude of the shear
modulus is large, therefore the vortex propagates faster, mak-
ing it harder to observe. In particular, it was difficult to de-
termine the parameters ḡ and z in this case. We found the
best collapse with z=0.78�0.1 for data taken in passive
method. We then fixed z to 0.75 known from the power-law
dependence behavior reported previously �19,20,28,29�, and
found ḡ=0.18�0.13 Pa sz. To reduce the large error bars in
the passive method, it would be necessary to repeat our mea-
surements at higher frequencies and/or larger separation dis-
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FIG. 8. Normalized displacement cross-correlation functions
4�rS� �a� and 8�rS� �b� of two probe particles �silica beads, R
=0.58 �m� in worm-like micelle solutions �cm=1 wt %� versus
frequency �f =� /2�� compared for different separation distances r.
The solid lines represent the autocorrelation function of a single
particle normalized by 6�R. The dashed lines indicate slopes of
�2, corresponding to diffusive motion.
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FIG. 9. �Color online� �a� Collapse of the dimensionless inter-
particle response functions 4�r�G���� and 8�r�G���� versus nondi-
mensionalized distance r /	ve between silica probe particles of ra-
dius R=0.58 �m. These measurements were performed on
wormlike micelle solutions of 1 wt %, using the passive method.
Here, the viscoelastic penetration depth 	ve depends on the param-
eters ḡ and z via Eqs. �12� and �22�, and these parameters were
adjusted to obtain the best collapse. Optimal parameters were z
=0.68�0.05 and ḡ=0.0275�0.008 Pa sz, where the solvent �wa-
ter� viscosity was also taken into account via Eq. �22�. �b� The
dependence of ḡ on micelle concentration was determined by find-
ing the best simultaneous fits or collapse of the data for a range of
r values and for different concentrations, using a fixed value of z
=0.68. The error bars were estimated by the range of ḡ yielding data
collapse. The resulting concentration dependence confirms the ex-
pected linear behavior.
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tances. Nevertheless, our results are consistent with prior
measurements and predictions of both parameters.

Independently, we have measured both real, ��,�� ���, and
imaginary, ��,�� ���, parts of the response functions directly
by actively manipulating one particle and measuring the re-
sponse of the other. In Figs. 2�a� and 2�b�, the parallel �Fig.
2�a�� and perpendicular �Fig. 2�b�� complex interparticle re-
sponse functions for c=1 mg /ml F-actin solutions are
shown, probed with beads of 1.28 �m radius. Here the in-
terparticle response functions were fitted with Eqs. �8�–�11�
to find the parameters ḡ=0.22�0.05 Pa sz and z
=0.78�0.01 simultaneously. Data for both parallel �r
=12.1 �m� and perpendicular �r=13.5 �m� channels are
compared with z=0.75 and ḡ=0.22 Pa sz in Figs. 2�a� and
2�b�.

The values of z and ḡ found from both methods are con-
sistent and also agree with results from prior experimental
microrhelogy and macrorheology experiments for both en-
tangled actin solutions �18–20,28,29� and wormlike-micelle
solutions �42,43�. To obtain these values it was essential to
model the inertial effects including both polymer and solvent
contributions to the shear modulus. We observed that, al-
though the high-frequency rheology of the polymer solution
is dominated by the polymer, the background solvent con-
tributes non-negligibly to the inertial vortex propagation. To
test this, we excluded the solvent shear modulus �−i��� in
Eqs. �8�–�11� and �22�, and analyzed our data assuming a
high-frequency shear modulus of the form G= ḡ�z. For both
wormlike micelle solutions and entangled F-actin solutions,

we found much larger values of z�0.9 and a nonlinear con-
centration dependence of ḡ, contrary to expectations.

VI. DISCUSSION

In our experiments we have directly resolved the inertial
response and flow of fluids on micrometer and microsecond
time scales using optical trapping and interferometric particle
tracking. Our results demonstrate that vorticity and stress
propagate diffusively in simple liquids and superdiffusively
in viscoelastic media. One consequence of inertial vortex
formation is the long-time tail effect observed in light scat-
tering experiments �6�. To connect to these results, we calcu-
lated the velocity autocorrelation of a single particle from the
displacement fluctuations. Unfortunately, the effect we are
looking for is subtle and is difficult to detect in the presence
of other factors. At the highest frequencies the vortex is still
influenced by the finite probe size, and at intermediate fre-
quencies the particle motion is already affected by the laser
trap potential. The results were thus inconclusive. Similar
problems have been reported in Ref. �9�. The effects of iner-
tia we have described here set a fundamental limit to the
applicability of two-particle microrheology techniques which
are based on the measurement of cross-correlated position
fluctuations of particles �14,18,19,24,42�. Inertia limits the
range of stress propagation at high frequencies, stronger in
soft media such as those studied here than in media with
higher viscoelastic moduli. Inertia affects measurements at
frequencies as low as 1 kHz for separations of order 10 �m,
showing an apparent increase of the measured shear moduli
below their actual values �43�. Since the stress propagation is
diffusive, or nearly so, even measurements at video rates can
be affected for probe particle separations of order 50 �m. As
we have shown here, these inertial effects are more pro-
nounced in the perpendicular interparticle response functions
than in the parallel ones. This suggests that one should obtain
shear moduli from the parallel inter-particle response func-
tions if one does not want to correct for inertia. In a more
precise analysis of two-particle microrheology experiments,
the fluid response function cannot simply be modeled by a
generalized Stokes-Einstein relationship and has to be cor-
rected for inertial effects according to the probed frequency
as well as the particles separation. Such corrections, how-
ever, will necessarily be limited, given the exponential at-
tenuation of stress due to inertia.
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